Nice Inequality Problem from APMO 2024 P3 投稿日: 2024/6/30最終更新日: 2025/5/18
Very amazing problem
Let n n n be a positive integer and a 1 , a 2 , … , a n a_1,a_2,\ldots,a_n a 1 , a 2 , … , a n be positive real numbers. Prove that
∑ i = 1 n 1 2 i ( 2 1 + a i ) 2 i ≥ 2 1 + a 1 a 2 … a n − 1 2 n . \sum_{i=1}^{n} \frac{1}{2^i} \left( \frac{2}{1+a_i} \right)^{2^i} \geq \frac{2}{1+a_1a_2\ldots a_n}-\frac{1}{2^n}.
i = 1 ∑ n 2 i 1 ( 1 + a i 2 ) 2 i ≥ 1 + a 1 a 2 … a n 2 − 2 n 1 .
Note that
1 2 n + ∑ i = 1 n 1 2 i ( 2 1 + a i ) 2 i = 1 2 n + 1 2 n ( 2 1 + a n ) 2 n + ∑ i = 1 n − 1 1 2 i ( 2 1 + a i ) 2 i , \frac{1}{2^n}+\sum_{i=1}^n \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i} = \frac{1}{2^n}+\frac{1}{2^n}\left(\frac{2}{1+a_n}\right)^{2^n}+\sum_{i=1}^{n-1} \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i},
2 n 1 + i = 1 ∑ n 2 i 1 ( 1 + a i 2 ) 2 i = 2 n 1 + 2 n 1 ( 1 + a n 2 ) 2 n + i = 1 ∑ n − 1 2 i 1 ( 1 + a i 2 ) 2 i ,
and by AM-GM inequality,
1 2 n + 1 2 n ( 2 1 + a n ) 2 n ≥ 1 2 n − 1 ( 2 1 + a n ) 2 n − 1 . \frac{1}{2^n}+\frac{1}{2^n}\left(\frac{2}{1+a_n}\right)^{2^n}\geq \frac{1}{2^{n-1}}\left(\frac{2}{1+a_n}\right)^{2^{n-1}}.
2 n 1 + 2 n 1 ( 1 + a n 2 ) 2 n ≥ 2 n − 1 1 ( 1 + a n 2 ) 2 n − 1 .
Thus we have
1 2 n + ∑ i = 1 n 1 2 i ( 2 1 + a i ) 2 i ≥ 1 2 n − 1 ( 2 1 + a n ) 2 n − 1 + ∑ i = 1 n − 1 1 2 i ( 2 1 + a i ) 2 i . \frac{1}{2^n}+\sum_{i=1}^n \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i}\geq \frac{1}{2^{n-1}}\left(\frac{2}{1+a_n}\right)^{2^{n-1}}+\sum_{i=1}^{n-1} \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i}.
2 n 1 + i = 1 ∑ n 2 i 1 ( 1 + a i 2 ) 2 i ≥ 2 n − 1 1 ( 1 + a n 2 ) 2 n − 1 + i = 1 ∑ n − 1 2 i 1 ( 1 + a i 2 ) 2 i .
For x , y ∈ R 0 x, y\in\mathbb{R}_{0} x , y ∈ R 0 and m ∈ Z 0 , m\in\mathbb{Z}_{0}, m ∈ Z 0 ,
( 2 1 + x ) 2 m + ( 2 1 + y ) 2 m 2 ≥ ( 2 1 + x y ) 2 m − 1 . \cfrac{\left(\frac{2}{1+x}\right)^{2^m}+\left(\frac{2}{1+y}\right)^{2^m}}{2} \ge \left(\frac{2}{1+xy}\right)^{2^{m-1}}.
2 ( 1 + x 2 ) 2 m + ( 1 + y 2 ) 2 m ≥ ( 1 + x y 2 ) 2 m − 1 .
Proof.
We proceed by induction. The base case m = 1 m=1 m = 1 requires us to show that
( 2 1 + x ) 2 + ( 2 1 + y ) 2 2 ≥ 2 1 + x y . \cfrac{\left(\frac{2}{1+x}\right)^{2}+\left(\frac{2}{1+y}\right)^{2}}{2} \ge \frac{2}{1+xy}.
2 ( 1 + x 2 ) 2 + ( 1 + y 2 ) 2 ≥ 1 + x y 2 .
Upon expanding and simplifying it becomes
x 3 y + x y 3 + 1 ≥ x 2 y 2 + 2 x y ⟹ x 2 + y 2 + 1 x y − x y − 2 ≥ 0 ⟹ ( x − y ) 2 + ( x y − 1 x y ) 2 ≥ 0 , x^3y+xy^3+1\geq x^2y^2+2xy\implies x^2+y^2+\frac{1}{xy}-xy-2\geq 0\implies (x-y)^2+\left(\sqrt{xy}-\frac{1}{\sqrt{xy}}\right)^2\geq 0,
x 3 y + x y 3 + 1 ≥ x 2 y 2 + 2 x y ⟹ x 2 + y 2 + x y 1 − x y − 2 ≥ 0 ⟹ ( x − y ) 2 + ( x y − x y 1 ) 2 ≥ 0 ,
which is clearly true.
Suppose the statement is indeed true for some k ∈ Z 0 . k\in\mathbb{Z}_{0}. k ∈ Z 0 . Observe that by RMS-AM inequality, we have
( 2 1 + x ) 2 k + 1 + ( 2 1 + y ) 2 k + 1 2 ≥ ( ( 2 1 + x ) 2 k + ( 2 1 + y ) 2 k 2 ) 2 ≥ ( ( 2 1 + x y ) 2 k − 1 ) 2 = ( 2 1 + x y ) 2 k , \cfrac{\left(\frac{2}{1+x}\right)^{2^{k+1}}+\left(\frac{2}{1+y}\right)^{2^{k+1}}}{2}\geq \left(\cfrac{\left(\frac{2}{1+x}\right)^{2^{k}}+\left(\frac{2}{1+y}\right)^{2^{k}}}{2}\right)^2\geq \left(\left(\frac{2}{1+xy}\right)^{2^{k-1}}\right)^2=\left(\frac{2}{1+xy}\right)^{2^k},
2 ( 1 + x 2 ) 2 k + 1 + ( 1 + y 2 ) 2 k + 1 ≥ 2 ( 1 + x 2 ) 2 k + ( 1 + y 2 ) 2 k 2 ≥ ( ( 1 + x y 2 ) 2 k − 1 ) 2 = ( 1 + x y 2 ) 2 k ,
and so it holds for k + 1 k+1 k + 1 as well, concluding our proof. ■ \blacksquare ■
Hence, we get that
1 2 n − 1 ( 2 1 + a n ) 2 n − 1 + 1 2 n − 1 ( 2 1 + a n − 1 ) 2 n − 1 + ∑ i = 1 n − 2 1 2 i ( 2 1 + a i ) 2 i ≥ 1 2 n − 2 ( 2 1 + a n − 1 a n ) 2 n − 2 + ∑ i = 1 n − 2 1 2 i ( 2 1 + a i ) 2 i , \frac{1}{2^{n-1}}\left(\frac{2}{1+a_n}\right)^{2^{n-1}}+\frac{1}{2^{n-1}}\left(\frac{2}{1+a_{n-1}}\right)^{2^{n-1}}+\sum_{i=1}^{n-2} \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i}\geq \frac{1}{2^{n-2}}\left(\frac{2}{1+a_{n-1}a_n}\right)^{2^{n-2}}+\sum_{i=1}^{n-2} \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i},
2 n − 1 1 ( 1 + a n 2 ) 2 n − 1 + 2 n − 1 1 ( 1 + a n − 1 2 ) 2 n − 1 + i = 1 ∑ n − 2 2 i 1 ( 1 + a i 2 ) 2 i ≥ 2 n − 2 1 ( 1 + a n − 1 a n 2 ) 2 n − 2 + i = 1 ∑ n − 2 2 i 1 ( 1 + a i 2 ) 2 i ,
and we proceed similarly to establish that
1 2 n + ∑ i = 1 n 1 2 i ( 2 1 + a i ) 2 i ≥ 2 1 + a 1 a 2 … a n − 1 a n ⟹ ∑ i = 1 n 1 2 i ( 2 1 + a i ) 2 i ≥ 2 1 + a 1 a 2 … a n − 1 a n − 1 2 n , \frac{1}{2^n}+\sum_{i=1}^n \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i}\geq \frac{2}{1+a_1a_2\ldots a_{n-1}a_n} \implies \sum_{i=1}^{n} \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i} \geq \frac{2}{1+a_1a_2\dots a_{n-1}a_n}-\frac{1}{2^n},
2 n 1 + i = 1 ∑ n 2 i 1 ( 1 + a i 2 ) 2 i ≥ 1 + a 1 a 2 … a n − 1 a n 2 ⟹ i = 1 ∑ n 2 i 1 ( 1 + a i 2 ) 2 i ≥ 1 + a 1 a 2 … a n − 1 a n 2 − 2 n 1 ,
as desired. ■ \blacksquare ■
Comment
Upon initially addressing this problem, I considered applying Tchebycheff's inequality, expressed as
1 + a 1 a 2 … a n − 1 a n 2 ≥ ( 1 + a 1 ) ( 1 + a 2 ) … ( 1 + a n − 1 ) ( 1 + a n ) 2 n . \frac{1+a_1a_2\dots a_{n-1}a_n}{2} \geq \frac{(1+a_1)(1+a_2)\dots (1+a_{n-1})(1+a_n)}{2^n}.
2 1 + a 1 a 2 … a n − 1 a n ≥ 2 n ( 1 + a 1 ) ( 1 + a 2 ) … ( 1 + a n − 1 ) ( 1 + a n ) .
However, upon further examination, it appears that this inequality does not consistently hold. For instance, when n = 2 n=2 n = 2 , the expression simplifies to ( a 1 − 1 ) ( a 2 − 1 ) ≥ 0 (a_1-1)(a_2-1) \geq 0 ( a 1 − 1 ) ( a 2 − 1 ) ≥ 0 , which is not universally true.
Remark
There is an easy way to do it. We only need to prove for ∀ 1 ≤ i ≤ n . \forall 1\le i\le n. ∀1 ≤ i ≤ n .