Nice Inequality Problem from APMO 2024 P3

投稿日:2024/6/30最終更新日:2025/5/18

Very amazing problem

Problem Statement

Let nn be a positive integer and a1,a2,,ana_1,a_2,\ldots,a_n be positive real numbers. Prove that

i=1n12i(21+ai)2i21+a1a2an12n.\sum_{i=1}^{n} \frac{1}{2^i} \left( \frac{2}{1+a_i} \right)^{2^i} \geq \frac{2}{1+a_1a_2\ldots a_n}-\frac{1}{2^n}.

Solution

Note that

12n+i=1n12i(21+ai)2i=12n+12n(21+an)2n+i=1n112i(21+ai)2i,\frac{1}{2^n}+\sum_{i=1}^n \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i} = \frac{1}{2^n}+\frac{1}{2^n}\left(\frac{2}{1+a_n}\right)^{2^n}+\sum_{i=1}^{n-1} \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i},

and by AM-GM inequality,

12n+12n(21+an)2n12n1(21+an)2n1.\frac{1}{2^n}+\frac{1}{2^n}\left(\frac{2}{1+a_n}\right)^{2^n}\geq \frac{1}{2^{n-1}}\left(\frac{2}{1+a_n}\right)^{2^{n-1}}.

Thus we have

12n+i=1n12i(21+ai)2i12n1(21+an)2n1+i=1n112i(21+ai)2i.\frac{1}{2^n}+\sum_{i=1}^n \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i}\geq \frac{1}{2^{n-1}}\left(\frac{2}{1+a_n}\right)^{2^{n-1}}+\sum_{i=1}^{n-1} \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i}.

Claim

For x,yR0x, y\in\mathbb{R}_{0} and mZ0,m\in\mathbb{Z}_{0},

(21+x)2m+(21+y)2m2(21+xy)2m1.\cfrac{\left(\frac{2}{1+x}\right)^{2^m}+\left(\frac{2}{1+y}\right)^{2^m}}{2} \ge \left(\frac{2}{1+xy}\right)^{2^{m-1}}.

Proof. We proceed by induction. The base case m=1m=1 requires us to show that

(21+x)2+(21+y)2221+xy.\cfrac{\left(\frac{2}{1+x}\right)^{2}+\left(\frac{2}{1+y}\right)^{2}}{2} \ge \frac{2}{1+xy}.

Upon expanding and simplifying it becomes

x3y+xy3+1x2y2+2xy    x2+y2+1xyxy20    (xy)2+(xy1xy)20,x^3y+xy^3+1\geq x^2y^2+2xy\implies x^2+y^2+\frac{1}{xy}-xy-2\geq 0\implies (x-y)^2+\left(\sqrt{xy}-\frac{1}{\sqrt{xy}}\right)^2\geq 0,

which is clearly true.

Suppose the statement is indeed true for some kZ0.k\in\mathbb{Z}_{0}. Observe that by RMS-AM inequality, we have

(21+x)2k+1+(21+y)2k+12((21+x)2k+(21+y)2k2)2((21+xy)2k1)2=(21+xy)2k,\cfrac{\left(\frac{2}{1+x}\right)^{2^{k+1}}+\left(\frac{2}{1+y}\right)^{2^{k+1}}}{2}\geq \left(\cfrac{\left(\frac{2}{1+x}\right)^{2^{k}}+\left(\frac{2}{1+y}\right)^{2^{k}}}{2}\right)^2\geq \left(\left(\frac{2}{1+xy}\right)^{2^{k-1}}\right)^2=\left(\frac{2}{1+xy}\right)^{2^k},

and so it holds for k+1k+1 as well, concluding our proof. \blacksquare

Hence, we get that

12n1(21+an)2n1+12n1(21+an1)2n1+i=1n212i(21+ai)2i12n2(21+an1an)2n2+i=1n212i(21+ai)2i,\frac{1}{2^{n-1}}\left(\frac{2}{1+a_n}\right)^{2^{n-1}}+\frac{1}{2^{n-1}}\left(\frac{2}{1+a_{n-1}}\right)^{2^{n-1}}+\sum_{i=1}^{n-2} \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i}\geq \frac{1}{2^{n-2}}\left(\frac{2}{1+a_{n-1}a_n}\right)^{2^{n-2}}+\sum_{i=1}^{n-2} \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i},

and we proceed similarly to establish that

12n+i=1n12i(21+ai)2i21+a1a2an1an    i=1n12i(21+ai)2i21+a1a2an1an12n,\frac{1}{2^n}+\sum_{i=1}^n \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i}\geq \frac{2}{1+a_1a_2\ldots a_{n-1}a_n} \implies \sum_{i=1}^{n} \frac{1}{2^i}\left(\frac{2}{1+a_i}\right)^{2^i} \geq \frac{2}{1+a_1a_2\dots a_{n-1}a_n}-\frac{1}{2^n},

as desired. \blacksquare

Comment Upon initially addressing this problem, I considered applying Tchebycheff's inequality, expressed as

1+a1a2an1an2(1+a1)(1+a2)(1+an1)(1+an)2n.\frac{1+a_1a_2\dots a_{n-1}a_n}{2} \geq \frac{(1+a_1)(1+a_2)\dots (1+a_{n-1})(1+a_n)}{2^n}.

However, upon further examination, it appears that this inequality does not consistently hold. For instance, when n=2n=2, the expression simplifies to (a11)(a21)0(a_1-1)(a_2-1) \geq 0, which is not universally true.

Remark There is an easy way to do it. We only need to prove for 1in.\forall 1\le i\le n.